Reading Tabular Data into DataFrames
Overview
Teaching: 5 min
Exercises: 5 minQuestions
How can I read tabular data?
Objectives
Import the Pandas library.
Use Pandas to load a simple CSV data set.
Get some basic information about a Pandas DataFrame.
Use the Pandas library to do statistics on tabular data.
- Pandas is a widely-used Python library for statistics, particularly on tabular data.
- Borrows many features from R’s dataframes.
    - A 2-dimenstional table whose columns have names and potentially have different data types.
 
- Load it with import pandas.
- Read a Comma Separate Values (CSV) data file with pandas.read_csv.- Argument is the name of the file to be read.
- Assign result to a variable to store the data that was read.
 
import pandas
data = pandas.read_csv('data/gapminder_gdp_oceania.csv')
print(data)
       country  gdpPercap_1952  gdpPercap_1957  gdpPercap_1962  \
0    Australia     10039.59564     10949.64959     12217.22686
1  New Zealand     10556.57566     12247.39532     13175.67800
   gdpPercap_1967  gdpPercap_1972  gdpPercap_1977  gdpPercap_1982  \
0     14526.12465     16788.62948     18334.19751     19477.00928
1     14463.91893     16046.03728     16233.71770     17632.41040
   gdpPercap_1987  gdpPercap_1992  gdpPercap_1997  gdpPercap_2002  \
0     21888.88903     23424.76683     26997.93657     30687.75473
1     19007.19129     18363.32494     21050.41377     23189.80135
   gdpPercap_2007
0     34435.36744
1     25185.00911
- The columns in a dataframe are the observed variables, and the rows are the observations.
- Pandas uses backslash \to show wrapped lines when output is too wide to fit the screen.
File Not Found
Our lessons store their data files in a
datasub-directory, which is why the path to the file isdata/gapminder_gdp_oceania.csv. If you forget to includedata/, or if you include it but your copy of the file is somewhere else, you will get a runtime error that ends with a line like this:OSError: File b'gapminder_gdp_oceania.csv' does not exist
Use index_col to specify that a column’s values should be used as row headings.
- Row headings are numbers (0 and 1 in this case).
- Really want to index by country.
- Pass the name of the column to read_csvas itsindex_colparameter to do this.
data = pandas.read_csv('data/gapminder_gdp_oceania.csv', index_col='country')
print(data)
             gdpPercap_1952  gdpPercap_1957  gdpPercap_1962  gdpPercap_1967  \
country
Australia       10039.59564     10949.64959     12217.22686     14526.12465
New Zealand     10556.57566     12247.39532     13175.67800     14463.91893
             gdpPercap_1972  gdpPercap_1977  gdpPercap_1982  gdpPercap_1987  \
country
Australia       16788.62948     18334.19751     19477.00928     21888.88903
New Zealand     16046.03728     16233.71770     17632.41040     19007.19129
             gdpPercap_1992  gdpPercap_1997  gdpPercap_2002  gdpPercap_2007
country
Australia       23424.76683     26997.93657     30687.75473     34435.36744
New Zealand     18363.32494     21050.41377     23189.80135     25185.00911
Use DataFrame.info to find out more about a dataframe.
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Australia to New Zealand
Data columns (total 12 columns):
gdpPercap_1952    2 non-null float64
gdpPercap_1957    2 non-null float64
gdpPercap_1962    2 non-null float64
gdpPercap_1967    2 non-null float64
gdpPercap_1972    2 non-null float64
gdpPercap_1977    2 non-null float64
gdpPercap_1982    2 non-null float64
gdpPercap_1987    2 non-null float64
gdpPercap_1992    2 non-null float64
gdpPercap_1997    2 non-null float64
gdpPercap_2002    2 non-null float64
gdpPercap_2007    2 non-null float64
dtypes: float64(12)
memory usage: 208.0+ bytes
- This is a DataFrame
- Two rows named 'Australia'and'New Zealand'
- Twelve columns, each of which has two actual 64-bit floating point values.
    - We will talk later about null values, which are used to represent missing observations.
 
- Uses 208 bytes of memory.
The DataFrame.columns variable stores information about the dataframe’s columns.
- Note that this is data, not a method.
    - Like math.pi.
- So do not use ()to try to call it.
 
- Like 
- Called a member variable, or just member.
print(data.columns)
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
       'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
       'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
      dtype='object')
To see the row indices, you can use DataFrame.index.
Use DataFrame.T to transpose a dataframe.
- Sometimes want to treat columns as rows and vice versa.
- Transpose (written .T) doesn’t copy the data, just changes the program’s view of it.
- Like columns, it is a member variable.
print(data.T)
country           Australia  New Zealand
gdpPercap_1952  10039.59564  10556.57566
gdpPercap_1957  10949.64959  12247.39532
gdpPercap_1962  12217.22686  13175.67800
gdpPercap_1967  14526.12465  14463.91893
gdpPercap_1972  16788.62948  16046.03728
gdpPercap_1977  18334.19751  16233.71770
gdpPercap_1982  19477.00928  17632.41040
gdpPercap_1987  21888.88903  19007.19129
gdpPercap_1992  23424.76683  18363.32494
gdpPercap_1997  26997.93657  21050.41377
gdpPercap_2002  30687.75473  23189.80135
gdpPercap_2007  34435.36744  25185.00911
Use DataFrame.describe to get summary statistics about data.
DataFrame.describe() gets the summary statistics of only the columns that have numerical data. All other columns are ignored.
print(data.describe())
       gdpPercap_1952  gdpPercap_1957  gdpPercap_1962  gdpPercap_1967  \
count        2.000000        2.000000        2.000000        2.000000
mean     10298.085650    11598.522455    12696.452430    14495.021790
std        365.560078      917.644806      677.727301       43.986086
min      10039.595640    10949.649590    12217.226860    14463.918930
25%      10168.840645    11274.086022    12456.839645    14479.470360
50%      10298.085650    11598.522455    12696.452430    14495.021790
75%      10427.330655    11922.958888    12936.065215    14510.573220
max      10556.575660    12247.395320    13175.678000    14526.124650
       gdpPercap_1972  gdpPercap_1977  gdpPercap_1982  gdpPercap_1987  \
count         2.00000        2.000000        2.000000        2.000000
mean      16417.33338    17283.957605    18554.709840    20448.040160
std         525.09198     1485.263517     1304.328377     2037.668013
min       16046.03728    16233.717700    17632.410400    19007.191290
25%       16231.68533    16758.837652    18093.560120    19727.615725
50%       16417.33338    17283.957605    18554.709840    20448.040160
75%       16602.98143    17809.077557    19015.859560    21168.464595
max       16788.62948    18334.197510    19477.009280    21888.889030
       gdpPercap_1992  gdpPercap_1997  gdpPercap_2002  gdpPercap_2007
count        2.000000        2.000000        2.000000        2.000000
mean     20894.045885    24024.175170    26938.778040    29810.188275
std       3578.979883     4205.533703     5301.853680     6540.991104
min      18363.324940    21050.413770    23189.801350    25185.009110
25%      19628.685413    22537.294470    25064.289695    27497.598692
50%      20894.045885    24024.175170    26938.778040    29810.188275
75%      22159.406358    25511.055870    28813.266385    32122.777857
max      23424.766830    26997.936570    30687.754730    34435.367440
- Not particularly useful with just two records, but very helpful when there are thousands.
Analyzing Europe
Read the data in
gapminder_gdp_europe.csv(which should be in the same directory asgapminder_gdp_oceania.csv) into a variable calledeuropeand display its summary statistics.How would you calculate just the minimum or maximum across the countries per year?
How would you calculate the mean GDP for each country?
Reading Other Data
Read the data in
gapminder_gdp_americas.csv(which should be in the same directory asgapminder_gdp_oceania.csv) into a variable calledamericasand display its summary statistics.Solution
To read in a CSV, we use
pandas.read_csvand pass the filename ‘data/gapminder_gdp_americas.csv’ to it. We also once again pass the column name ‘country’ to the parameterindex_colin order to index by country:americas = pandas.read_csv('data/gapminder_gdp_americas.csv', index_col='country')
Inspecting Data.
After reading the data for the Americas, use
help(americas.head)andhelp(americas.tail)to find out whatDataFrame.headandDataFrame.taildo.
- What method call will display the first three rows of this data?
- What method call will display the last three columns of this data? (Hint: you may need to change your view of the data.)
Solution
- We can check out the first five rows of
americasby executingamericas.head()(allowing us to view the head of the DataFrame). We can specify the number of rows we wish to see by specifying the parameternin our call toamericas.head(). To view the first three rows, execute:americas.head(n=3)The output is then
continent gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 \ country Argentina Americas 5911.315053 6856.856212 7133.166023 Bolivia Americas 2677.326347 2127.686326 2180.972546 Brazil Americas 2108.944355 2487.365989 3336.585802 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 \ country Argentina 8052.953021 9443.038526 10079.026740 8997.897412 Bolivia 2586.886053 2980.331339 3548.097832 3156.510452 Brazil 3429.864357 4985.711467 6660.118654 7030.835878 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 \ country Argentina 9139.671389 9308.418710 10967.281950 8797.640716 Bolivia 2753.691490 2961.699694 3326.143191 3413.262690 Brazil 7807.095818 6950.283021 7957.980824 8131.212843 gdpPercap_2007 country Argentina 12779.379640 Bolivia 3822.137084 Brazil 9065.800825
- To check out the last three rows of
americas, we would use the command,americas.tail(n=3), analogous tohead()used above. However, here we want to look at the last three columns so we need to change our view and then usetail(). To do so, we create a new new DataFrame in which rows and columns are switchedamericas_flipped = americas.TWe can then view the last three columns of
americasby viewing the last three rows ofamericas_flipped:americas_flipped.tail(n=3)The output is then
country Argentina Bolivia Brazil Canada Chile Colombia \ gdpPercap_1997 10967.3 3326.14 7957.98 28954.9 10118.1 6117.36 gdpPercap_2002 8797.64 3413.26 8131.21 33329 10778.8 5755.26 gdpPercap_2007 12779.4 3822.14 9065.8 36319.2 13171.6 7006.58 country Costa Rica Cuba Dominican Republic Ecuador ... \ gdpPercap_1997 6677.05 5431.99 3614.1 7429.46 ... gdpPercap_2002 7723.45 6340.65 4563.81 5773.04 ... gdpPercap_2007 9645.06 8948.1 6025.37 6873.26 ... country Mexico Nicaragua Panama Paraguay Peru Puerto Rico \ gdpPercap_1997 9767.3 2253.02 7113.69 4247.4 5838.35 16999.4 gdpPercap_2002 10742.4 2474.55 7356.03 3783.67 5909.02 18855.6 gdpPercap_2007 11977.6 2749.32 9809.19 4172.84 7408.91 19328.7 country Trinidad and Tobago United States Uruguay Venezuela gdpPercap_1997 8792.57 35767.4 9230.24 10165.5 gdpPercap_2002 11460.6 39097.1 7727 8605.05 gdpPercap_2007 18008.5 42951.7 10611.5 11415.8Note: we could have done the above in a single line of code by ‘chaining’ the commands:
americas.T.tail(n=3)
Reading Files in Other Directories
The data for your current project is stored in a file called
microbes.csv, which is located in a folder calledfield_data. You are doing analysis in a notebook calledanalysis.ipynbin a sibling folder calledthesis:your_home_directory +-- field_data/ | +-- microbes.csv +-- thesis/ +-- analysis.ipynbWhat value(s) should you pass to
read_csvto readmicrobes.csvinanalysis.ipynb?Solution
We need to specify the path to the file of interest in the call to
pandas.read_csv. We first need to ‘jump’ out of the folderthesisusing ‘../’ and then into the folderfield_datausing ‘field_data/’. Then we can specify the filename `microbes.csv. The result is as follows:data_microbes = pandas.read_csv('../field_data/microbes.csv')
Writing Data
As well as the
read_csvfunction for reading data from a file, Pandas provides ato_csvfunction to write dataframes to files. Applying what you’ve learned about reading from files, write one of your dataframes to a file calledprocessed.csv. You can usehelpto get information on how to useto_csv.Solution
In order to write the DataFrame
americasto a file calledprocessed.csv, execute the following command:americas.to_csv('processed.csv')For help on
to_csv, you could execute, for example,help(americas.to_csv)Note that
help(to_csv)throws an error! This is a subtlety and is due to the fact thatto_csvis NOT a function in and of itself and the actual call isamericas.to_csv.
Key Points
Use the Pandas library to do statistics on tabular data.
Use
index_colto specify that a column’s values should be used as row headings.
Use
DataFrame.infoto find out more about a dataframe.
The
DataFrame.columnsvariable stores information about the dataframe’s columns.
Use
DataFrame.Tto transpose a dataframe.
Use
DataFrame.describeto get summary statistics about data.